readr
vs. base Rreadr
vs. base Rchallenge
## # A tibble: 2,000 × 2## x y ## <dbl> <date>## 1 404 NA ## 2 4172 NA ## 3 3004 NA ## 4 787 NA ## 5 37 NA ## 6 2332 NA ## 7 2489 NA ## 8 1449 NA ## 9 3665 NA ## 10 3863 NA ## # … with 1,990 more rows
# compare file sizefile.info(here("static", "data", "challenge.rds"))$size %>% utils:::format.object_size("auto")
## [1] "11.6 Kb"
file.info(here("static", "data", "challenge.csv"))$size %>% utils:::format.object_size("auto")
## [1] "37.1 Kb"
feather
readxl
library(readxl)xlsx_example <- readxl_example(path = "datasets.xlsx")read_excel(path = xlsx_example)
## # A tibble: 150 × 5## Sepal.Length Sepal.Width Petal.Length Petal.Width Species## <dbl> <dbl> <dbl> <dbl> <chr> ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa ## 4 4.6 3.1 1.5 0.2 setosa ## 5 5 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa ## 7 4.6 3.4 1.4 0.3 setosa ## 8 5 3.4 1.5 0.2 setosa ## 9 4.4 2.9 1.4 0.2 setosa ## 10 4.9 3.1 1.5 0.1 setosa ## # … with 140 more rows
readxl
excel_sheets(path = xlsx_example)
## [1] "iris" "mtcars" "chickwts" "quakes"
read_excel(path = xlsx_example, sheet = "chickwts")
## # A tibble: 71 × 2## weight feed ## <dbl> <chr> ## 1 179 horsebean## 2 160 horsebean## 3 136 horsebean## 4 227 horsebean## 5 217 horsebean## 6 168 horsebean## 7 108 horsebean## 8 124 horsebean## 9 143 horsebean## 10 140 horsebean## # … with 61 more rows
haven
and SASlibrary(haven)read_sas(data_file = system.file("examples", "iris.sas7bdat", package = "haven"))
## # A tibble: 150 × 5## Sepal_Length Sepal_Width Petal_Length Petal_Width Species## <dbl> <dbl> <dbl> <dbl> <chr> ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa ## 4 4.6 3.1 1.5 0.2 setosa ## 5 5 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa ## 7 4.6 3.4 1.4 0.3 setosa ## 8 5 3.4 1.5 0.2 setosa ## 9 4.4 2.9 1.4 0.2 setosa ## 10 4.9 3.1 1.5 0.1 setosa ## # … with 140 more rows
haven
and SPSSread_sav(file = system.file("examples", "iris.sav", package = "haven"))
## # A tibble: 150 × 5## Sepal.Length Sepal.Width Petal.Length Petal.Width Species## <dbl> <dbl> <dbl> <dbl> <dbl+lbl>## 1 5.1 3.5 1.4 0.2 1 [setosa]## 2 4.9 3 1.4 0.2 1 [setosa]## 3 4.7 3.2 1.3 0.2 1 [setosa]## 4 4.6 3.1 1.5 0.2 1 [setosa]## 5 5 3.6 1.4 0.2 1 [setosa]## 6 5.4 3.9 1.7 0.4 1 [setosa]## 7 4.6 3.4 1.4 0.3 1 [setosa]## 8 5 3.4 1.5 0.2 1 [setosa]## 9 4.4 2.9 1.4 0.2 1 [setosa]## 10 4.9 3.1 1.5 0.1 1 [setosa]## # … with 140 more rows
haven
and Stataread_dta(file = system.file("examples", "iris.dta", package = "haven"))
## # A tibble: 150 × 5## sepallength sepalwidth petallength petalwidth species## <dbl> <dbl> <dbl> <dbl> <chr> ## 1 5.10 3.5 1.40 0.200 setosa ## 2 4.90 3 1.40 0.200 setosa ## 3 4.70 3.20 1.30 0.200 setosa ## 4 4.60 3.10 1.5 0.200 setosa ## 5 5 3.60 1.40 0.200 setosa ## 6 5.40 3.90 1.70 0.400 setosa ## 7 4.60 3.40 1.40 0.300 setosa ## 8 5 3.40 1.5 0.200 setosa ## 9 4.40 2.90 1.40 0.200 setosa ## 10 4.90 3.10 1.5 0.100 setosa ## # … with 140 more rows
Illustrations from the Openscapes blog Tidy Data for reproducibility, efficiency, and collaboration by Julia Lowndes and Allison Horst)
Illustrations from the Openscapes blog Tidy Data for reproducibility, efficiency, and collaboration by Julia Lowndes and Allison Horst)
Illustrations from the Openscapes blog Tidy Data for reproducibility, efficiency, and collaboration by Julia Lowndes and Allison Horst)
Illustrations from the Openscapes blog Tidy Data for reproducibility, efficiency, and collaboration by Julia Lowndes and Allison Horst)
Illustrations from the Openscapes blog Tidy Data for reproducibility, efficiency, and collaboration by Julia Lowndes and Allison Horst)
table4a
## # A tibble: 3 × 3## country `1999` `2000`## * <chr> <int> <int>## 1 Afghanistan 745 2666## 2 Brazil 37737 80488## 3 China 212258 213766
table4a
## # A tibble: 3 × 3## country `1999` `2000`## * <chr> <int> <int>## 1 Afghanistan 745 2666## 2 Brazil 37737 80488## 3 China 212258 213766
pivot_longer( data = table4a, cols = c(`1999`, `2000`), names_to = "year", values_to = "cases")
## # A tibble: 6 × 3## country year cases## <chr> <chr> <int>## 1 Afghanistan 1999 745## 2 Afghanistan 2000 2666## 3 Brazil 1999 37737## 4 Brazil 2000 80488## 5 China 1999 212258## 6 China 2000 213766
table2
## # A tibble: 12 × 4## country year type count## <chr> <int> <chr> <int>## 1 Afghanistan 1999 cases 745## 2 Afghanistan 1999 population 19987071## 3 Afghanistan 2000 cases 2666## 4 Afghanistan 2000 population 20595360## 5 Brazil 1999 cases 37737## 6 Brazil 1999 population 172006362## 7 Brazil 2000 cases 80488## 8 Brazil 2000 population 174504898## 9 China 1999 cases 212258## 10 China 1999 population 1272915272## 11 China 2000 cases 213766## 12 China 2000 population 1280428583
table2
## # A tibble: 12 × 4## country year type count## <chr> <int> <chr> <int>## 1 Afghanistan 1999 cases 745## 2 Afghanistan 1999 population 19987071## 3 Afghanistan 2000 cases 2666## 4 Afghanistan 2000 population 20595360## 5 Brazil 1999 cases 37737## 6 Brazil 1999 population 172006362## 7 Brazil 2000 cases 80488## 8 Brazil 2000 population 174504898## 9 China 1999 cases 212258## 10 China 1999 population 1272915272## 11 China 2000 cases 213766## 12 China 2000 population 1280428583
pivot_wider( data = table2, names_from = type, values_from = count)
## # A tibble: 6 × 4## country year cases population## <chr> <int> <int> <int>## 1 Afghanistan 1999 745 19987071## 2 Afghanistan 2000 2666 20595360## 3 Brazil 1999 37737 172006362## 4 Brazil 2000 80488 174504898## 5 China 1999 212258 1272915272## 6 China 2000 213766 1280428583
table3
## # A tibble: 6 × 3## country year rate ## * <chr> <int> <chr> ## 1 Afghanistan 1999 745/19987071 ## 2 Afghanistan 2000 2666/20595360 ## 3 Brazil 1999 37737/172006362 ## 4 Brazil 2000 80488/174504898 ## 5 China 1999 212258/1272915272## 6 China 2000 213766/1280428583
table3
## # A tibble: 6 × 3## country year rate ## * <chr> <int> <chr> ## 1 Afghanistan 1999 745/19987071 ## 2 Afghanistan 2000 2666/20595360 ## 3 Brazil 1999 37737/172006362 ## 4 Brazil 2000 80488/174504898 ## 5 China 1999 212258/1272915272## 6 China 2000 213766/1280428583
separate( data = table3, col = rate, into = c( "cases", "population" ), convert = TRUE)
## # A tibble: 6 × 4## country year cases population## <chr> <int> <int> <int>## 1 Afghanistan 1999 745 19987071## 2 Afghanistan 2000 2666 20595360## 3 Brazil 1999 37737 172006362## 4 Brazil 2000 80488 174504898## 5 China 1999 212258 1272915272## 6 China 2000 213766 1280428583
table5
## # A tibble: 6 × 4## country century year rate ## * <chr> <chr> <chr> <chr> ## 1 Afghanistan 19 99 745/19987071 ## 2 Afghanistan 20 00 2666/20595360 ## 3 Brazil 19 99 37737/172006362 ## 4 Brazil 20 00 80488/174504898 ## 5 China 19 99 212258/1272915272## 6 China 20 00 213766/1280428583
table5
## # A tibble: 6 × 4## country century year rate ## * <chr> <chr> <chr> <chr> ## 1 Afghanistan 19 99 745/19987071 ## 2 Afghanistan 20 00 2666/20595360 ## 3 Brazil 19 99 37737/172006362 ## 4 Brazil 20 00 80488/174504898 ## 5 China 19 99 212258/1272915272## 6 China 20 00 213766/1280428583
unite( data = table5, col = "year", century, year)
## # A tibble: 6 × 3## country year rate ## <chr> <chr> <chr> ## 1 Afghanistan 19_99 745/19987071 ## 2 Afghanistan 20_00 2666/20595360 ## 3 Brazil 19_99 37737/172006362 ## 4 Brazil 20_00 80488/174504898 ## 5 China 19_99 212258/1272915272## 6 China 20_00 213766/1280428583
table5
## # A tibble: 6 × 4## country century year rate ## * <chr> <chr> <chr> <chr> ## 1 Afghanistan 19 99 745/19987071 ## 2 Afghanistan 20 00 2666/20595360 ## 3 Brazil 19 99 37737/172006362 ## 4 Brazil 20 00 80488/174504898 ## 5 China 19 99 212258/1272915272## 6 China 20 00 213766/1280428583
# remove underscoreunite( data = table5, col = "year", century, year, sep = "") %>% mutate(year = parse_number(year))
## # A tibble: 6 × 3## country year rate ## <chr> <dbl> <chr> ## 1 Afghanistan 1999 745/19987071 ## 2 Afghanistan 2000 2666/20595360 ## 3 Brazil 1999 37737/172006362 ## 4 Brazil 2000 80488/174504898 ## 5 China 1999 212258/1272915272## 6 China 2000 213766/1280428583
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |